3.6.68 \(\int x^3 \sqrt {a+b x^n+c x^{2 n}} \, dx\) [568]

Optimal. Leaf size=148 \[ \frac {x^4 \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {4}{n};-\frac {1}{2},-\frac {1}{2};\frac {4+n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{4 \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}} \]

[Out]

1/4*x^4*AppellF1(4/n,-1/2,-1/2,(4+n)/n,-2*c*x^n/(b-(-4*a*c+b^2)^(1/2)),-2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))*(a+b*x
^n+c*x^(2*n))^(1/2)/(1+2*c*x^n/(b-(-4*a*c+b^2)^(1/2)))^(1/2)/(1+2*c*x^n/(b+(-4*a*c+b^2)^(1/2)))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 148, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.091, Rules used = {1399, 524} \begin {gather*} \frac {x^4 \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {4}{n};-\frac {1}{2},-\frac {1}{2};\frac {n+4}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{4 \sqrt {\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}+1} \sqrt {\frac {2 c x^n}{\sqrt {b^2-4 a c}+b}+1}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^3*Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(x^4*Sqrt[a + b*x^n + c*x^(2*n)]*AppellF1[4/n, -1/2, -1/2, (4 + n)/n, (-2*c*x^n)/(b - Sqrt[b^2 - 4*a*c]), (-2*
c*x^n)/(b + Sqrt[b^2 - 4*a*c])])/(4*Sqrt[1 + (2*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^n)/(b + Sqrt[b
^2 - 4*a*c])])

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 1399

Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^IntPart[p]*((a +
 b*x^n + c*x^(2*n))^FracPart[p]/((1 + 2*c*(x^n/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^n/(b - Rt[b^
2 - 4*a*c, 2])))^FracPart[p])), Int[(d*x)^m*(1 + 2*c*(x^n/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^n/(b - Sqrt[
b^2 - 4*a*c])))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]

Rubi steps

\begin {align*} \int x^3 \sqrt {a+b x^n+c x^{2 n}} \, dx &=\frac {\sqrt {a+b x^n+c x^{2 n}} \int x^3 \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}} \, dx}{\sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ &=\frac {x^4 \sqrt {a+b x^n+c x^{2 n}} F_1\left (\frac {4}{n};-\frac {1}{2},-\frac {1}{2};\frac {4+n}{n};-\frac {2 c x^n}{b-\sqrt {b^2-4 a c}},-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}\right )}{4 \sqrt {1+\frac {2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {1+\frac {2 c x^n}{b+\sqrt {b^2-4 a c}}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B] Leaf count is larger than twice the leaf count of optimal. \(365\) vs. \(2(148)=296\).
time = 0.56, size = 365, normalized size = 2.47 \begin {gather*} \frac {x^4 \left (4 (4+n) \left (a+x^n \left (b+c x^n\right )\right )+a n (4+n) \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {4}{n};\frac {1}{2},\frac {1}{2};\frac {4+n}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )+2 b n x^n \sqrt {\frac {b-\sqrt {b^2-4 a c}+2 c x^n}{b-\sqrt {b^2-4 a c}}} \sqrt {\frac {b+\sqrt {b^2-4 a c}+2 c x^n}{b+\sqrt {b^2-4 a c}}} F_1\left (\frac {4+n}{n};\frac {1}{2},\frac {1}{2};2+\frac {4}{n};-\frac {2 c x^n}{b+\sqrt {b^2-4 a c}},\frac {2 c x^n}{-b+\sqrt {b^2-4 a c}}\right )\right )}{4 (4+n)^2 \sqrt {a+x^n \left (b+c x^n\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^3*Sqrt[a + b*x^n + c*x^(2*n)],x]

[Out]

(x^4*(4*(4 + n)*(a + x^n*(b + c*x^n)) + a*n*(4 + n)*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b - Sqrt[b^2 - 4*a
*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[4/n, 1/2, 1/2, (4 + n)/n, (-2*c
*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])] + 2*b*n*x^n*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2
*c*x^n)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^n)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[(4 +
 n)/n, 1/2, 1/2, 2 + 4/n, (-2*c*x^n)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^n)/(-b + Sqrt[b^2 - 4*a*c])]))/(4*(4 + n)
^2*Sqrt[a + x^n*(b + c*x^n)])

________________________________________________________________________________________

Maple [F]
time = 0.00, size = 0, normalized size = 0.00 \[\int x^{3} \sqrt {a +b \,x^{n}+c \,x^{2 n}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*x^n+c*x^(2*n))^(1/2),x)

[Out]

int(x^3*(a+b*x^n+c*x^(2*n))^(1/2),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)*x^3, x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (ha
s polynomial part)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int x^{3} \sqrt {a + b x^{n} + c x^{2 n}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*x**n+c*x**(2*n))**(1/2),x)

[Out]

Integral(x**3*sqrt(a + b*x**n + c*x**(2*n)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*x^n+c*x^(2*n))^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^(2*n) + b*x^n + a)*x^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int x^3\,\sqrt {a+b\,x^n+c\,x^{2\,n}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a + b*x^n + c*x^(2*n))^(1/2),x)

[Out]

int(x^3*(a + b*x^n + c*x^(2*n))^(1/2), x)

________________________________________________________________________________________